Физика примеры решения задач Электротехника Задачи и лабораторные работы Математика примеры решения задач Вычислить интеграл Информатика Компьютерные сети Компьютерная математика
Исследовать систему уравнений и решить ее, если она совместна

Контрольная работа по математике примеры решений

Системы линейных уравнений.

Решение типового варианта контрольной работы.

Задача 1. Вычислить определитель .

Решение. Для вычисления определителя третьего порядка будем использовать известную формулу Саррюса (правило треугольников), которое может быть записано следующей формулой:

Ответ: 0.

Вычислить несобственные интегралы или установить их расходимость.

Свойства определителей

1. Определитель не меняется при транспонировании.

2. Если одна из строк определителя состоит из нулей, то определитель равен нулю.

3. Если в определителе переставить две строки, определитель поменяет знак.

4. Определитель, содержащий две одинаковые строки, равен нулю.

5. Если все элементы некоторой строки определителя умножить на некоторое число k, то сам определитель умножится на k.

6. Определитель, содержащий две пропорциональные строки, равен нулю.

7. Если все элементы i-й строки определителя представлены в виде суммы двух слагаемых ai j = bj + cj (j=), то определитель равен сумме определителей, у которых все строки, кроме i-ой, - такие же, как в заданном определителе, а i-я строка в одном из слагаемых состоит из элементов bj, в другом - из элементов cj.

8. Определитель не меняется, если к элементам одной из его строк прибавляются соответствующие элементы другой строки, умноженные на одно и то же число.

Замечание. Все свойства остаются справедливыми, если вместо строк взять столбцы.

Минором Mi j элемента ai j определителя d n-го порядка называется определитель порядка n-1, который получается из d вычеркиванием строки и столбца, содержащих данный элемент.

Алгебраическим дополнением элемента ai j определителя d называется его минор Mi j, взятый со знаком (-1) i + j. Алгебраическое дополнение элемента ai j будем обозначать Ai j. Таким образом, Ai j = (-1) i + j Mi j.

Способы практического вычисления определителей, основанные на том, что определитель порядка n может быть выражен через определители более низких порядков, дает следующая теорема.

Составим уравнение плоскости, проходящей через две точки  и  параллельно вектору .

Пусть   - произвольная точка плоскости. Тогда векторы ,  и  будут компланарны. Приравнивая нулю смешанное произведение этих векторов, получим искомое уравнение плоскости в виде

 . (3.12)

Решить систему методом Гаусса, матричным способом и используя правило Крамера.

Решим систему методом Крамера. Главный определитель системы

Выполнить действия:

В различных областях знания, при изучении тех или иных явлений или процессов мы встречаемся с постоянными величинами, которые в условиях данного процесса сохраняют свое числовое значение, и с переменными величинами, которые в данном процессе могут принимать различные числовые значения. Например, число месяцев в году постоянно. Примерами переменных величин могут служить величина издержек производства, доход от реализации продукции, национальный доход
Исследование функций