Математика примеры решения задач

Основные обозначения и определения

Всюду в тексте учебника мы будем использовать общепринятые обозначения, те, что используются и в школьных учебниках. В частности,
$ \mathbb{R}$ означает числовую прямую (множество всех вещественных чисел);
$ \mathbb{N}$ означает множество натуральных чисел $ \{1;2;3;4;\dots\}$;
$ \mathbb{Z}$ означает множество всех целых чисел $ \{\dots;-3;-2;-1;0;1;2;3;\dots\}$;
$ \varnothing $ означает пустое множество; по определению, в нём нет ни одного элемента;

Во многих вопросах геометрии, естествознания и т.д. приходится иметь дело с функциями двух, трех и более переменных.
$ [a;b]$, $ [a;b)$, $ (a;b]$ и $ (a;b)$, где $ a\in\mathbb{R}$, $ b\in\mathbb{R}$, соответственно,-- замкнутые, полуоткрытые и открытые промежутки: квадратная скобка означает, что соответствующий конец промежутка включается в множество, а круглая скобка-- что не включается;
$ (-\infty;b]$, $ (-\infty;b)$, $ (a;+\infty)$ и $ [a;+\infty)$, где $ a\in\mathbb{R}$, $ b\in\mathbb{R}$-- замкнутые и открытые лучи (бесконечные промежутки);
$ (-\infty;+\infty)$-- числовая прямая, то же, что и $ \mathbb{R}$;
$ A\cup B$-- пересечение (общая часть) множеств $ A$ и $ B$;
$ A\cap B$-- объединение множеств $ A$ и $ B$ (все точки из $ A$ и все точки из $ B$);
$ A\diagdown B$-- множество тех элементов из $ A$, которые не принадлежат $ B$;
$ A\sbs B$-- включение $ A$ в $ B$ ($ A$-- это часть $ B$);
$ x\in A$-- принадлежность элемента $ x$ множеству $ A$ ($ x$ принадлежит $ A$);
$ x\notin A$-- элемент $ x$ не принадлежит множеству $ A$;
$ \{a;b;\dots;z\}$-- множество, состоящее из элементов $ a,b,\dots,z$; в частности, $ \{a\}$-- множество из одного элемента $ a$;
$ \{x\in A: P(x)\}$-- множество всех тех элементов $ x$ из $ A$, для которых выполняется свойство $ P(x)$.

Первый способ задания функции: табличный

пример

Второй способ задания функции: с помощью формулы

Обзор некоторых элементарных функций

Третий способ задания функции: указание процедуры вычисления

Во многих случаях функцию $ f$ приходится задавать сложным образом, так как предыдущие способы задания функций не годятся.

Композиция функций

Если даны два отображения $ {f:X\to U_1}$ и $ {g:U_2\to Y}$, где $ U_2\sbs U_1$, то имеет смысл "сквозное отображение" $ {x\mapsto u\mapsto y}$ из $ X$ в $ Y$, заданное формулой $ y=g(f(x))$, $ x\in X$, которое называется композицией функций $ f$ и $ g$ и обозначается $ g\circ f$.

Обратная функция

Если $ f:A\to B$-- взаимно-однозначное отображение (биекция), то для любого $ y\in B$ однозначно определен такой элемент $ x\in A$, что $ f(x)=y$. Тем самым однозначно определено соответствие $ y\mapsto x$, называемое обратной функцией по отношению к функции $ f$. Обратная функция для $ f$ обозначается $ f^{-1}$.

Примеры и упражнения

Упражнения

Упражнение 1.6 Пусть $ f(x)=\arcsin x$, $ x\in[-1;1]$, $ g(u)=\cos u$, $ u\in\mathbb{R}$. Тогда определены композиции $ f\circ g$ и $ g\circ f$. Докажите, что при $ x\in[-1;1]$ имеет место равенство $ (g\circ f)(x)=\sqrt{1-x^2}$. Выясните также, чему равна функция $ f\circ g$ и каков её график.

Непрерывность функций и точки разрыва

Определение непрерывности функции

Определение Пусть функция $ f(x)$ определена на некотором интервале $ (a;b)$, для которого $ x_0$-- внутренняя точка. Функция $ f(x)$ называется непрерывной в точке $ x_0$, если существует предел $ f(x)$ при $ x\to x_0$ и этот предел равен значению $ f(x_0)$, то есть
$\displaystyle \lim_{x\to x_0}f(x)=f(x_0).$

Примеры, упражнения

Определение точек разрыва

Пример   Рассмотрим функцию $ f(x)=\dfrac{\vert x^2-x\vert}{x^2-x}$,

Пример   Функция $ f(x)=\dfrac{1}{x^2}$ имеет при $ x=0$ разрыв второго рода, так как $ f(x)\to+\infty$ при $ x\to0+$ и  

Пример   Рассмотрим функцию $ f(x)$, заданную равенством $\displaystyle f(x)=\lim_{n\to\infty}\cos^nx.$

Свойства функций, непрерывных в точке

   Теорема Пусть функции $ f(x)$ и $ g(x)$ непрерывны в точке $ x_0$. Тогда функции $ h_1(x)=f(x)+g(x)$, $ h_2(x)=f(x)-g(x)$, $ h_3(x)=f(x)g(x)$ непрерывны в точке $ x_0$. Если $ g(x_0)\ne0$, то функция $ h_4(x)=\dfrac{f(x)}{g(x)}$ также непрерывна в точке $ x_0$.

Непрерывность функции на интервале и на отрезке

Определение

Пример   Рассмотрим функцию $ f(x)=\cos x-x$ на отрезке $ [0;\frac{\pi}{2}]$.

Теорема об ограниченности непрерывной функции

Теорема о достижении экстремума непрерывной функцией

Равномерная непрерывность

Примеры, упражнения

Непрерывность обратной функции

Теорема Пусть $ f$ -- непрерывная монотонная функция, $ \mathcal{D}(f)=[a;b]$, $ \mathcal{E}(f)=[c;d]$. Тогда обратная к $ f$ функция $ {\varphi}$ непрерывна на отрезке $ [c;d]$.

Гиперболические функции и ареа-функции

Гиперболическим синусом называется функция $\displaystyle \mathop{\rm sh}\nolimits x=\frac{1}{2}(e^x-e^{-x}).$
Гиперболическим косинусом называется функция $\displaystyle \mathop{\rm ch}\nolimits x=\frac{1}{2}(e^x+e^{-x}).$
Гиперболическим тангенсом называется функция $\displaystyle \mathop{\rm th}\nolimits x=\frac{e^x-e^{-x}}{e^x+e^{-x}}=\dfrac{\mathop{\rm sh}\nolimits x}{\mathop{\rm ch}\nolimits x}.$
Гиперболическим котангенсом называется функция $\displaystyle \mathop{\rm cth}\nolimits x=\frac{e^x+e^{-x}}{e^x-e^{-x}}=\dfrac{...
...\nolimits x}{\mathop{\rm sh}\nolimits x}=\dfrac{1}{\mathop{\rm th}\nolimits x}.$

Примеры, упражнения

Примеры и упражнения

Пределы при разных условиях. Некоторые частные случаи

Пример

Пример

Общее определение предела

Пример

Замена переменного и преобразование базы при такой замене

Бесконечно малые и локально ограниченные величины и их свойства

Общие свойства пределов

Первый и второй замечательные пределы

Бесконечно большие величины и бесконечные пределы

Пример

Использование непрерывности функций при вычислении пределов

Сравнение бесконечно малых

Таблица эквивалентных бесконечно малых

Пример

Упражнения на вычисление пределов

Формула Тейлора представления числовой функции многочленом

Многочлен Тейлора

Коэффициенты Тейлора

Остаток в формуле Тейлора и его оценка

Остаток в формуле Тейлора в форме Лагранжа

Формула Тейлора для некоторых элементарных функций

Упражнение

Оценки ошибок в формулах приближённого дифференцирования

Примеры

Пределы, Многочлен Тейлора

Пределы при разных условиях. Некоторые частные случаи

Пример Пусть $ x_0=0$ и рассматривается функция $ f(x)=2\sin x+1$. Покажем, что $\displaystyle \lim_{x\rightarrow 0}(2\sin x+1)=1.$

Пример Покажем, что предел последовательности $ y_n=\dfrac{1}{n^2}$ равен 0.

Общее определение предела

Определение Пусть $ \mathcal{B}$-- некоторая база и функция $ f(x)$ определена во всех точках $ x$ некоторого окончания $ E_0$ базы $ \mathcal{B}$ (и, значит, определена во всех точках более далёких окончаний $ E\sbs E_0$). Число $ L$ называется пределом функции $ f(x)$ по базе $ \mathcal{B}$ (или при базе $ \mathcal{B}$) и обозначается $\displaystyle L=\lim_{\mathcal{B}}f(x),$

  • Физические приложения двойных интегралов Пример 1 Определить координаты центра тяжести однородной пластины, образованной параболами Решение задач на вычисление интеграла

Пример

Замена переменного и преобразование базы при такой замене

Бесконечно малые и локально ограниченные величины и их свойства

В этом разделе мы изучим свойства бесконечно малых величин, то есть величин, стремящихся к 0. В следующих разделах на этой основе мы будем изучать свойства величин, имеющих произвольное значение предела.

Определение Функция $ {\alpha}(x)$ называется бесконечно малой величиной при базе $ \mathcal{B}$, если её предел при данной базе равен 0, то есть $ {\alpha}\xrightarrow {\mathcal{B}}0$.

Общие свойства пределов

Первый и второй замечательные пределы

 Определение   Первым замечательным пределом называется предел $\displaystyle \lim_{x\to0}\frac{\sin x}{x}.$

 Определение   Вторым замечательным пределом называется предел $\displaystyle e=\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n.$

Бесконечно большие величины и бесконечные пределы

Пример

Использование непрерывности функций при вычислении пределов

   Определение Пусть $ x_0$ -- внутренняя точка области определения функции $ f(x)$, то есть функция $ f(x)$ определена при всех $ x$ из некоторого интервала $ (x_0-{\delta};x_0+{\delta})$ ( $ {\delta}>0$), окружающего точку $ x_0$. Функция $ f(x)$ называется непрерывной в точке $ x_0$, если
$\displaystyle \lim_{x\to x_0}f(x)=f(x_0)$

Сравнение бесконечно малых

Таблица эквивалентных бесконечно малых при

Пример

Упражнения на вычисление пределов

Формула Тейлора представления числовой функции многочленом

Многочлен Тейлора

Коэффициенты Тейлора

Остаток в формуле Тейлора и его оценка

Остаток в формуле Тейлора в форме Лагранжа

Формула Тейлора для некоторых элементарных функций

Формула Тейлора для экспоненты такова: $\displaystyle e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\ldots+\frac{x^n}{n!}+R_n(x).$

Получаем формулу Тейлора для синуса: $\displaystyle \sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\ldots+
(-1)^{k-1}\dfrac{x^{2k-1}}{(2k-1)!}+R_{2k}(x).$

Упражнение

Оценки ошибок в формулах приближённого дифференцирования

Примеры

        Пример   Рассмотрим функцию $ f(x)=xe^{x^2}$. Найдём её разложение по формуле Тейлора в точке $ x_0=0$. Начнём с того, что напишем ранее найденное разложение для экспоненты,
$\displaystyle e^z=1+z+\frac{z^2}{2!}+\frac{z^3}{3!}+\ldots+\frac{z^n}{n!}+R_n(z),$
и положим в нём $ z=x^2$:
$\displaystyle e^{x^2}=1+x^2+\frac{x^4}{2!}+\frac{x^6}{3!}+\ldots+\frac{x^{2n}}{n!}+R_n(x^2).
$
Теперь умножим левую и правую части этой формулы на $ x$:
$\displaystyle xe^{x^2}=x+x^3+\frac{x^5}{2!}+\frac{x^7}{3!}+\ldots+\frac{x^{2n+1}}{n!}
+xR_n(x^2).$
Заметим, что бесконечно малое при $ x\to0$ выражение $ \tilde R(x)=xR_n(x^2)$ имеет тот же или больший порядок малости, как $ x^{2(n+1)+1}=x^{2n+3}$, и поэтому может рассматриваться как остаточный член $ R_{2n+2}(x)$ в формуле Тейлора для $ f(x)$, а предыдущие слагаемые в правой части формулы -- как многочлен Тейлора данной функции. Так что её искомое разложение найдено.     

Разберём теперь пример того, как полученные разложения элементарных функций можно использовать для раскрытия некоторых неопределённостей.

        Пример   Найдём предел
$\displaystyle \lim_{x\to0}\dfrac{e^x-1-x}{\sqrt{1-x}-\cos\sqrt{x}}.$
Для начала найдём разложение по формуле Тейлора в точке 0 для числителя:
$\displaystyle e^x-1-x=-1-x+1+x+\frac{x^2}{2}+r_3(x)=
\frac{x^2}{2}+r_3(x),$
где через $ r_3(x)$ обозначен остаточный член, имеющий тот же порядок малости, что и $ x^3$. Разложение для знаменателя имеет вид:
$\displaystyle \sqrt{1-x}-\cos\sqrt{x}=(1-\frac{x}{2}-\frac{x^2}{8}+s_3(x))-
(1-\frac{x}{2}-\frac{x^2}{24}+t_3(x)),$
где остаточные члены $ s_3(x)$ и $ t_3(x)$ тоже имеют тот же порядок малости, что и $ x^3$, при $ x\to0$. Выполняя приведение подобных членов, получаем, что знаменатель равен
$\displaystyle -(\frac{1}{8}+\frac{1}{24})x^2+s_3(x)-t_3(x).$
Итак,
$\displaystyle \lim_{x\to0}\dfrac{e^x-1-x}{\sqrt{1-x}-\cos\sqrt{x}}=
 \lim_{x\to0}\dfrac{\frac{x^2}{2}+r_3(x)}
 {-(\frac{1}{8}+\frac{1}{24})x^2+s_3(x)-t_3(x)}=$   
$\displaystyle =\lim_{x\to0}\dfrac{\frac{1}{2}+\frac{r_3(x)}{x^2}}
 {-(\frac{1}{...
...rac{s_3(x)-t_3(x)}{x^2}}=
 \dfrac{\frac{1}{2}}{-(\frac{1}{8}+\frac{1}{24})}=-3.$   

Производные Свойства дифференцируемых функций

Мгновенная скорость при прямолинейном движении

Касательная к кривой на плоскости

Определение

Производная

Итак, согласно предыдущим двум определениям, производная $ f'(x_0)$ функции $ f(x)$ в точке $ x_0$, правая производная $ f'_+(x_0)$ и левая производная $ f'_-(x_0)$ задаются, соответственно, формулами \begin{subequations}\begin{gather}
 f'(x_0)=\lim_{h\to0}\dfrac{f(x_0+h)-f(x_0)}{...
..._-(x_0)=\lim_{h\to0-}\dfrac{f(x_0+h)-f(x_0)}{h},
 \end{gather}\end{subequations}

      • Замечание
      • Закон Фарадея Электродвижущая сила наведенная в замкнутом контуре C, равна скорости изменения магнитного потока, проходящего через данный контур Решение задач на вычисление интеграла Математика лекции, задачи. Примеры выполнения курсового и типового задания
      • Теорема

Свойства производных

Замечания

Производные некоторых элементарных функций

Найдём производную функции $ f(x)=\sqrt{x}$ в точке $ x>0$.

Рассмотрим функцию $ f(x)=\mathop{\rm tg}\nolimits x$ как отношение $ \dfrac{\sin x}{\cos x}$

Примеры

Дифференциал

Теорема   Функция $ f(x)$ имеет дифференциал $ df(x_0;{\Delta}x)$ в точке $ x_0$ тогда и только тогда, когда она имеет производную $ f'(x_0)$ в этой точке; при этом
$\displaystyle df(x_0;{\Delta}x)=f'(x_0){\Delta}x.$

Производная композиции

Примеры

Примеры

Инвариантность дифференциала

Производная обратной функции

Производные некоторых элементарных функций (продолжение)

Пример

Сводка основных результатов о производных

Производные высших порядков

Пример

Дифференциалы высших порядков и их неинвариантность

Производные функции, заданной параметрически

Пусть задана зависимость двух переменных $ x$ и $ y$ от параметра $ t$, изменяющегося в пределах от $ {\alpha}$ до $ {\beta}$:

$\displaystyle x={\varphi}(t); y=\psi(t); t\in({\alpha};{\beta}).$

Пусть функция $ x={\varphi}(t)$ имеет обратную: $ t={\varphi}^{-1}(x)=\Phi(x)$. Тогда мы можем, взяв композицию функций $ y=\psi(t)$ и $ t=\Phi(x)$, получить зависимость $ y$ от $ x$: $ y=\psi(\Phi(x))$. Зависимость величины $ y$ от величины $ x$, заданная через зависимость каждой из них от параметра $ t$ в виде $ x={\varphi}(t), y=\psi(t)$, называется функцией $ y=y(x)$, заданной параметрически.

Производная функции, заданной неявно

Приближённое вычисление производных

Примеры и упражнения

Примеры и упражнения 2

Свойства дифференцируемых функций

Четыре теоремы о дифференцируемых функциях

В этом разделе мы рассмотрим некоторые утверждения, касающиеся функций, которые во всех точках данного множества имеют производную. Такие функции называются дифференцируемыми на данном множестве.

Правило Лопиталя

На основе теоремы Коши мы выведем правило, которое даст нам мощный способ вычисления пределов отношений двух бесконечно малых или двух бесконечно больших величин. Сформулируем его сначала для отношения бесконечно малых.

Теорема 5.5(Правило Лопиталя)   Пусть функции $ f(x)$ и $ g(x)$ непрерывны в некоторой окрестности $ E$ точки $ x_0$ и $ f(x_0)=g(x_0)=0$, то есть $ f(x)\to0$ и $ g(x)\to0$ при $ x\to x_0$. Предположим, что при $ x\in E,\;x\ne x_0$ функции $ f(x)$ и $ g(x)$ имеют производные $ f'(x)$ и $ g'(x)$, причём существует предел отношения этих производных: $\displaystyle \lim_{x\to x_0}\dfrac{f'(x)}{g'(x)}=L.$

Замечания

Правило Лопиталя для отношения бесконечно больших

Сравнение бесконечно больших величин

Пусть $ \mathcal{B}$ -- некоторая база, и $ f(x)$ и $ g(x)$ -- функции, заданные на некотором окончании этой базы. В главе 2 мы изучали сравнение функций $ f(x)$ и $ g(x)$ при базе $ \mathcal{B}$ в случае, когда они является бесконечно малыми. Здесь же мы изучим сравнение бесконечно больших $ f(x)$ и $ g(x)$.

Примеры

Примеры

Исследование функций и построение графиков, Приближённое нахождение корней уравнений

Асимптоты графика функции

Назовём асимптотами прямые линии, к которым неограниченно приближается график функции, когда точка графика неограниченно удаляется от начала координат. В зависимости от поведения аргумента при этом, различаются два вида асимптот: вертикальные и наклонные.

Возрастание и убывание функции

Напомним, что функция $ f(x)$ называется возрастающей на интервале $ (a;b)\sbs\mathcal{D}(f)$, если для любых двух точек $ x_1,x_2\in(a;b)$ из неравенства $ x_1<x_2$ следует, что $ f(x_1)<f(x_2)$; убывающей на интервале $ (a;b)\sbs\mathcal{D}(f)$, если из неравенства $ x_1<x_2$ следует, что $ f(x_1)>f(x_2)$; невозрастающей на интервале $ (a;b)\sbs\mathcal{D}(f)$, если из неравенства $ x_1<x_2$ следует, что $ f(x_1)\geqslant f(x_2)$, и неубывающей на интервале $ (a;b)\sbs\mathcal{D}(f)$, если из неравенства $ x_1<x_2$ следует, что $ f(x_1)\leqslant f(x_2)$.

Примеры

Найти разложение функции в ряд Фурье-Эрмита.

Экстремум функции и необходимое условие экстремума

ОпределениеПусть функция $ f(x)$ определена в некоторой окрестности $ {E=(x_0-{\delta};x_0+{\delta})}$, $ {{\delta}>0}$, некоторой точки $ x_0$ своей области определения. Точка $ x_0$ называется точкой локального максимума, если в некоторой такой окрестности $ E$ выполняется неравенство $ f(x)\leqslant f(x_0)$ ($ \forall x\in E$), и точкой локального минимума, если $ f(x)\geqslant f(x_0)$ $ \forall x\in E$.    

Примеры

Достаточные условия локального экстремума

Примеры

Выпуклость функции

Общая схема исследования функции и построения её графика

Примеры

Примеры исследования функций и построения графиков

Пример  Исследуем функцию $ f(x)=\dfrac{x^3}{x^2+1}$ и построим её график.

Пример   Исследуем функцию $ f(x)=\dfrac{x^2+x}{x^2-3x+2}$ и построим её график.

Пример   Исследуем функцию $ f(x)=(x^2-2x)e^x$ и построим её график.

Упражнения и задачи

Упражнение Найдите наклонные или горизонтальные асимптоты графиков функций: $ f(x)=\dfrac{1-x^3}{x^2+x}$;

Упражнение   Найдите стационарные точки функции $\displaystyle f(x)=x^4-2x^2+3$

Приближённое нахождение корней уравнений

Кривизна плоской кривой

Кривизна графика функции

     Определение Пусть кривая $ L$ задана как график функции $ y=f(x)$ и $ M_0(x_0;f(x_0))$ -- некоторая точка этой кривой. Будем предполагать, что функция $ f(x)$ дифференцируема в некоторой окрестности точки $ x_0$, так что при $ x$ из этой окрестности к графику $ y=f(x)$ можно проводить касательные, составляющие угол $ {\alpha}(x)$ с осью $ Ox$.
Кривизной кривой $ L$ в точке $ M_0$ (или при $ x=x_0$) называется число $\displaystyle k(x_0)=\left\vert\lim_{x\to x_0}\dfrac{{\Delta}{\alpha}}{{\Delta}l}\right\vert,$

Вершины кривых

Примеры

Радиус кривизны

Упражнения

Приближённое нахождение корней уравнений и точек экстремума

В этой главе речь пойдёт о приближённом нахождении корней уравнения $ f(x)=0$. Дело в том, что решить это уравнение "точно", то есть выразить его корни $ x_1,x_2,\dots$ через известные постоянные (целые числа, числа $ e$, $ \pi$ и другие им подобные) с помощью элементарных функций от этих постоянных, удаётся далеко не всегда. Уже корни многочленов степени выше 4 не всегда выражаются "в радикалах", а общей формулы для уравнения степени выше 4, которая годилась бы при любых коэффициентах уравнения, вообще не существует.

Отделение корней

Пример

Метод простого перебора

Метод половинного деления

Пример

Метод простых итераций

Теория

Теорема   Если функция $ {\varphi}(x)$ имеет производную в некоторой окрестности $ E$ корня $ x^*$ уравнения $ x={\varphi}(x)$, причём $ \vert{\varphi}'(x)\vert\leqslant {\gamma}<1$ при $ x\in E$, то последовательность итераций $ x_{i+1}={\varphi}(x_i)$, полученных при $ i=1,2,3,\dots$, начиная с $ x_0\in E$, сходится к корню $ x^*$.

Метод секущих

Метод одной касательной

Метод Ньютона (метод касательных)

Рассмотрение предыдущего метода позволяет предположить, что итерации станут приближаться к корню ещё быстрее, если мы будем выбирать касательную вместо секущей не только на первом, а на каждом шаге. Ясно, что тогда формула итераций будет иметь вид $\displaystyle x_{i+1}=x_i-\dfrac{1}{f'(x_i)}f(x_i)$

Пример   Решим методом Ньютона всё то же уравнение $ x^3+2x^2+3x+5=0$,

Метод хорд (метод линейной интерполяции)

Пример  Решим уравнение $ x^3+2x^2+3x+5=0$ методом хорд.

Приближённое нахождение точки экстремума

Метод простого перебора

Метод почти половинного деления

Метод золотого сечения и метод Фибоначчи

Методы, связанные с приближённым нахождением корня производной

Пример Найдём локальные экстремумы, в том числе минимальное значение, функции $ f(x)=x^4-5x^3+6x-1$.

Упражнения

Векторная алгебра Линия и плоскость в пространстве

Определение вектора

Операции над векторами

В этом разделе мы вспомним известные из школьного курса математики операции сложения векторов и умножения вектора на число, а также свойства этих операций.

Определение Суммой векторов a и b называется такой третий вектор c, что при совмещенных началах этих трех векторов, векторы a и b служат сторонами параллелограмма, а вектор c-- его диагональю

Теорема Для любых векторов $ {\bf a},{\bf b},{\bf c}$ и любых вещественных чисел $ {\alpha},{\beta}$ выполняются следующие свойства: $ {\bf a}+{\bf b}={\bf b}+{\bf a}$ (свойство коммутативности операции сложения);

Разложение вектора по базису

Рассмотрим пример на нахождение координат вектора

Линейная зависимость векторов

Определить радиус и интервал сходимости степенного ряда .

Предложение Если система векторов содержит линейно зависимую подсистему, то вся система линейно зависима

Система координат и координаты вектора

Рассмотрим случай трехмерного пространства (на плоскости все построения аналогичны). Фиксируем некоторую точку $ O$ и возьмем произвольную точку $ M$ . Радиус-вектором точки $ M$ по отношению к точке $ O$ называется вектор $ \overrightarrow {OM}$ .

Если в пространстве выбран базис, то вектор $ \overrightarrow {OM}$ раскладывается по этому базису. Таким образом точке $ M$ можно сопоставить упорядоченную тройку чисел -- координаты ее радиус-вектора.

Проекции вектора

Проекция на ось суммы векторов равна сумме их проекций

Скалярное произведение

Теорема   Если векторы в ортонормированном базисе заданы своими координатами $ {{\bf a}=({\alpha}_1,
{\alpha}_2,{\alpha}_3)}$ , $ {{\bf b}=({\beta}_1,{\beta}_2,{\beta}_3})$ , то $\displaystyle {\bf a}{\bf b}={\alpha}_1{\beta}_1+{\alpha}_2{\beta}_2+{\alpha}_3{\beta}_3.$

Векторное произведение

Выражение векторного произведения через координаты сомножителей

Смешанное произведение

Определение Смешанным произведением векторов a,b,c называется число $ {\bf a}\cdot({\bf b}\times {\bf c})$ .

Смешанное произведение будем обозначать abc.

Смешанное произведение линейно по каждому аргументу

Нахождение координат вектора в произвольном базисе

Пусть в правом ортонормированном базисе заданы векторы $ {{\bf a}=({\alpha}_1,
{\alpha}_2,{\alpha}_3)}$ , $ {{\bf b}=({\beta}_1,{\beta}_2,{\beta}_3)}$ , $ {{\bf c}=({\gamma}_1,{\gamma}_2,{\gamma}_3)}$ , $ {{\bf d}=({\delta}_1,{\delta}_2,{\delta}_3)}$ . Цель данного раздела-- научиться определять, образуют ли векторы a,b,c базис, и, в случае положительного ответа на этот вопрос, научиться находить координаты вектора d в базисе a,b,c.

Линия и плоскость в пространстве

Уравнение поверхности

Определение Пусть в пространстве задана некоторая система координат и поверхность $ S$ . Будем говорить, что уравнение, связывающее три упорядоченные переменные, является уравнением поверхности $ S$ в заданной системе координат, если координаты любой точки поверхности $ S$ удовлетворяют этому уравнению, а координаты любой точки, не лежащей на поверхности $ S$ , этому уравнению не удовлетворяют.

Уравнение плоскости

Пусть в трехмерном пространстве задана декартова прямоугольная система координат. Попробуем установить, какой вид может иметь уравнение плоскости. Для этого заметим, что все плоскости, перпендикулярные одной прямой, параллельны друг другу.

Определение Любая прямая, перпендикулярная плоскости, называется нормалью к плоскости, а любой ненулевой вектор на такой прямой мы будем называть нормальным вектором плоскости.

Теорема Всякое уравнение(11.3), в котором $ \vert A\vert+\vert B\vert+\vert C\vert\ne0$ , является уравнением плоскости, ортогональной вектору $ {\bf n}=(A,B,C)$ .

Изображение плоскости

Все коэффициенты и свободный член в уравнении отличны от нуля

В этом случае находим точки пересечения плоскости с осями координат.

Коэффициенты при неизвестных отличны от нуля, а свободный член равен нулю

В этом случае плоскость проходит через начало координат $ O(0;0;0)$ и других точек пересечения с осями нет.

Один из коэффициентов при неизвестных равен нулю

Один из коэффициентов при неизвестных равен нулю В этом случае плоскость параллельна оси того переменного, которое в явном виде отсутствует в уравнении плоскости (коэффициент перед этим переменным равен нулю).

Два коэффициента при переменных равны нулю

Угол между плоскостями

Расстояние от точки до плоскости

Прямая на плоскости

Прямая в пространстве

Прямая в пространстве может быть задана как линия пересечения двух плоскостей. Так как точка прямой прнадлежит каждой из плоскостей, то ее координаты обязаны удовлетворять уравнениям обеих плоскостей, то есть удовлетворять системе из двух уравнений.

Замечание Если в качестве параметра $ t$ взять время, то точка $ M$ будет двигаться по прямой со скоростью $ \vert{\bf p}\vert$ , причем в момент времент $ {t=0}$ ее положение совпадает с точкой $ M_0$ . Вектор скорости точки совпадает с вектором p.

Основные задачи на прямую и плоскость

Довольно часто встает следующая задача. Требуется от общих уравнений прямой перейти к параметрическим, которые в некотором смысле являются более удобными. Рассмотрим, как решить такую задачу.

Для того, чтобы написать параметрические уравнения прямой нужно знать координаты какой-нибудь точки на прямой и координаты направляющего вектора.

Пример Найдите точку пересечения прямой $ \frac{x-2}2=\frac{y+1}{-1}=\frac{z-1}3$ и плоскости $ {x+y+2z-1=0}$ .

Даны уравнения двух прямых. Требуется найти угол между этими прямыми.

Пример Найдите точку $ M_1$ , симметричную точке $ M(1;-2;1)$ относительно прямой $ {\gamma}$ :

Кривые и поверхности Линейные пространства уравнения

Кривые второго порядка

Определение  Кривой второго порядка называется множество точек, координаты которых удовлетворяют уравнению второго порядка $\displaystyle ax^2+bxy+cy^2+dx+fy+g=0,$

Окружность

Эллипс

Определение 12.3   Эллипсом называется геометрическое место точек плоскости, для каждой из которых сумма расстояний до двух данных точек той же плоскости, назывемых фокусами эллипса, есть величина постоянная.       

Предложение Эллипс обладает двумя взаимно перпендикулярными осями симметрии, на одной из которых находятся его фокусы, и центром симметрии. Если эллипс задан каноническим уравнением (12.4), то его осями симметрии служат оси $ Ox$ и $ Oy$ , начало координат -- центр симметрии.

Гипербола

Парабола

Пример   Постройте параболу $ y^2=3x$ . Найдите ее фокус и директрису.

Параллельный перенос системы координат

Пусть на плоскости заданы две декартовы прямоугольные системы координат: $ xOy$ ("старая") и $ \tilde xO_1\tilde y$ ("новая"), причем как оси абсцисс, так и оси ординат обеих систем параллельны и одинаково направлены

В этом случае говорят, что одна система координат получается из другой "параллельным переносом".

 Пример   Нарисуйте кривую $ {x^2+9y^2-4x+18y+4=0}$ и найдите ее фокусы.

Пример   Постройте кривую $\displaystyle x+1+\sqrt{2-2y^2+4y}=0.$

Поверхности второго порядка

Определение Поверхностью второго порядка называется поверхность, определяемая уравнением $\displaystyle ax^2+by^2+cz^2+dxy+fxz+gyz+hx+ky+lz+m=0,$

Сфера

Эллипсоид

Сечения эллипсоида координатными плоскостями

Гиперболоиды

 Однополостным гиперболоидом называется поверхность, каноническое уравнение которой имеет вид $\displaystyle \frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1,$


Определение   Двуполостным гиперболоидом называется поверхность, каноническое уравнение которой имеет вид$\displaystyle -\frac{x^2}{a^2}-\frac{y^2}{b^2}+\frac{z^2}{c^2}=1,$

Конус

Конусом второго порядка называется поверхность, уравнение которой в некоторой декартовой системе координат имеет вид $\displaystyle \frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=0,$

Параболоиды

Определение  Гиперболическим параболоидом называется поверхность, уравнение которой в некоторой декартовой системе координат имеет вид $\displaystyle z=\frac{x^2}{a^2}-\frac{y^2}{b^2},$

Цилиндры

Цилиндрической поверхностью называется геометрическое место параллельных прямых, пересекающих данную линию. Эта линия называется направляющей, а параллельные прямые -- образующими.    

Параллельный перенос системы координат

 Пример Нарисуйте поверхность $ 4x^2-y^2+z^2+8x-4y-2z=3$ .

Линейные пространства уравнения

Системы линейных уравнений

     Определение 15.1   Системой $ m$ линейных уравнений с $ n$ неизвестными называется система уравнений вида $\displaystyle \left\{\begin{array}{l}a_{11}x_1+a_{12}x_2+\ldots+a_{1n}x_n=b_1,\...
...ots\ldots\ldots\\ 
 a_{m1}x_1+a_{m2}x_2+\ldots+a_{mn}x_n=b_m.\end{array}\right.$

Определение и примеры

Пример

Упражнение Пусть $ L$  -- двумерное векторное пространство, $ l$  -- некоторая прямая, проходящая через начало координат, $ \mathcal{A}$  -- преобразование, переводящее каждый вектор $ x$ в вектор $ x'$ симметричный исходному относительно прямой

Матрица линейного преобразования

Пример

Изменение матрицы линейного преобразования при изменении базиса

Собственные числа и собственные векторы

 Определение 19.3   Ненулевой вектор $ x$ называется собственным вектором линейного преобразования $ \mathcal{A}$ , соответствующим собственному числу $ {\lambda}$ , если $ {\mathcal{A}(x)={\lambda}x}$ .

Пример

Нахождение собственных чисел и собственных векторов матриц

Пример Найдите собственные числа и собственные векторы матрицы $\displaystyle A=\left(\begin{array}{rrr}1&-3&4\\ 4&-7&8\\ 6&-7&7\end{array}\right).$

Матрица линейного преобразования в базисе из собственных векторов

 Теорема   Пусть собственные векторы $ {e_1,\,e_2,\ldots,\,e_k}$ преобразования $ \mathcal{A}$ соответствуют собственным числам $ {{\lambda}_1,\,{\lambda}_2\ldots,\,{\lambda}_k}$ , среди которых нет равных друг другу. Тогда система векторов $ {e_1,\,e_2,\ldots,\,e_k}$ является линейно независимой.

Приведение уравнения второго порядка к каноническому виду

Теорема   Если матрица $ A$  -- симметричная, то ее собственные числа являются вещественными числами и существует ортонормированный базис из собственных векторов.     

Пример   Приведите уравнение поверхности $\displaystyle x^2+5y^2+z^2+2xy+6xz+2yz-2x+6y+2z=0$

Матрицы, Комплексные числа

Определение, обозначения и типы матриц

Определение Матрицей размеров $ m\times n$ называется прямоугольная таблица чисел, содержащая $ m$ строк и $ n$ столбцов. Числа, составляющие матрицу, называются элементами матрицы.       

Сложение матриц и умножение на число

Определение   Суммой матриц $ A$ и $ B$ размеров $ m\times n$ является матрица $ C$ таких же размеров, у которой $ {c_{ij}=a_{ij}+b_{ij}}$ , $ {i=1,2,\dots,m}$ , $ {j=1,2,\dots,n}$ .         

Символ суммирования

Замечание   Буква, стоящая внизу под знаком суммы (индекс суммирования), не влияет на результат суммирования. Важно лишь, как от этого индекса зависит суммируемая величина.

Умножение матриц

Линии и поверхности уровня В некоторых случаях можно получить наглядное геометрическое представление о характере изменения функции, рассматривая ее линии уровня (или поверхности уровня ), то есть линии (поверхности), где данная функция сохраняет постоянное значение

Пример Даны матрицы $ A=\left(\begin{array}{rrr}1&2&-1\\ 3&4&0\\ -1&2&-2\end{array}\right)$ , $ B=\left(\begin{array}{rr}
3&-2\\ 1&0\\ 4&-3\end{array}\right)$ . Найдите произведения $ AB$ и $ BA$ .

Замечание Легко проверить, что произведение квадратных матриц одного порядка всегда существует (определено).

Докажем дистрибутивность умножения

Транспонирование матрицы

Над матрицами определена еще одна операция, называемая транспонированием.

Определители

Предложение   При транспонировании матрицы определитель не меняется, то есть $ {\vert A^\top\vert=\vert A\vert}$ .     

Предложение Если матрица содержит нулевую строку, то ее определитель равен нулю.

Пример

Алгоритм создания нулей в столбце

Обратная матрица

Матрица $ B$ называется обратной матрицей для квадратной матрицы $ A$ , если $ {AB=BA=E}$ .         

 Пример   Найдите обратную матрицу для матрицы $ {A=\left(\begin{array}{rrr}1&-2&0\\ 3&4&2\\ -1&3&1\end{array}\right)}$ .

Ранг матрицы

Рангом матрицы $ A$ называется наибольший из порядков миноров матрицы $ A$ , отличных от нуля. Ранг нулевой матрицы считается равным нулю.     

Пример   Матрица $ A$ примера 14.9 имеет ранг 3, так как есть минор третьего порядка, отличный от нуля, а миноров четвертого порядка нет.

Алгоритм нахождения ранга матрицы

Теорема   Определитель матрицы равен нулю тогда и только тогда, когда один из ее столбцов (одна из строк) является линейной комбинацией остальных столбцов (строк).    

Комплексные числа

Построение поля комплексных чисел

 Определение   Числа вида $ a+bi$ , где $ a$ и $ b$  -- вещественные числа, называются комплексными числами.    

Примеры

Решение квадратных уравнений с вещественными коэффициентами

Изображение комплексных чисел. Модуль и аргумент комплексного числа

Рассмотрим на плоскости декартову прямоугольную систему координат $ xOy$ . Каждому комплексному числу $ {z=a+bi}$ можно сопоставить точку с координатами $ {(a,b)}$ , и наоборот, каждой точке с координатами $ {(c,d)}$ можно сопоставить комплексное число $ {w=c+di}$ . Таким образом, между точками плоскости и множеством комплексных чисел устанавливается взаимно однозначное соответствие. Поэтому комплекные числа можно изображать как точки плоскости. Плоскость, на которой изображают комплексные числа, обычно называют комплексной плоскостью.

Модуль и аргумент

Тригонометрическая форма комплексного числа

Примеры

Показательная форма комплексного числа

Показательная и тригонометрические функции в области комплексных чисел связаны между собой формулой $\displaystyle e^{i{\varphi}}=\cos{\varphi}+i\sin{\varphi},$ которая носит название формулы Эйлера.

Примеры

Извлечение корня из комплексного числа

Найдите корни уравнения $ {z^4=-1}$ .

Корни многочленов

В разделе "Решение квадратных уравнений с вещественными коэффициентами" мы видели, что в поле комплексных чисел любой квадратный трехчлен с вещественными коэффициентами имеет корни, этих корней два, если дискриминант отличен от нуля, и один в противном случае. Теперь, когда мы имеем возможность извлекать корни из комплексных чисел, мы можем найти корни квадратного трехчлена с комплексными коэффициентами, то есть решить уравнение $\displaystyle ax^2+bx+c=0,$

Математика Интегральное исчисление Основы оптики Практические занятия правила работы с матрицами и примеры матричных расчетов