Физика примеры решения задач Электротехника Задачи и лабораторные работы Математика примеры решения задач Вычислить интеграл Информатика Компьютерные сети Компьютерная математика
Дифференцируемость ФНП Дифференциалы высших порядков Производная сложной ФНП Вычислить интеграл Вычисление площади плоской фигуры Вычисление криволинейных интегралов Длина дуги в декартовых координата

Математика курсовые задачи примеры решений

Геометрические свойства интеграла ФНП

Возможное геометрическое представление интегральной суммы  функции  на , а затем и интеграла  определяют геометрические свойства интеграла и перечень некоторых возможных задач, решаемых с помощью интеграла.

1. Площадь плоской фигуры

а) Пусть на плоскости  задана криволинейная трапеция
(см. ранее в п. 2.2). Тогда ее площадь можно вычислить с помощью определенного интеграла , здесь  на .

Если фигура есть комбинация криволинейных трапеций, то ее площадь находится через соответствующие операции над площадями составляющих криволинейных трапеций. В частности, при нахождении площади фигуры , заданной неравенствами  (см. рисунок), можно применить формулу

.

Для понимания формулы достаточно провести параллельный перенос оси   на  с тем, чтобы кривые  и  были расположены выше оси.
И тогда площадь заданной фигуры находится через площадь криволинейной трапеции, т.е.

.

Иногда область  удобнее проектировать на ось  и задать неравенствами  (см. рисунок). В этом случае площадь фигуры  считается по формуле .

б) Площадь плоской фигуры  можно вычислить с помощью двойного интеграла:  (при  на  ), т.е. .

2. Длина дуги считается с помощью криволинейного интеграла

.

Если дуга задана параметрически  , то , поэтому  переходит в  для дифференцируемых на  функций , ,  и поэтому в указанном случае

.

Заметим, что если дуга плоская, например  то  ( – параметр) и длина дуги считается по
формуле

.

Площадь части криволинейной поверхности  считается с помощью поверхностного интеграла

Некоторые механические приложения интеграла ФНП Масса фигуры (отрезка, дуги, плоской фигуры, части криволинейной поверхности, тела)

Вычисление интеграла  рассмотрим подробно в зависимости от  и .

Для подынтегральной функции  определенный интеграл с переменным верхним пределом определяет
первообразную на .

 Определение дифференцируемости и дифференциала. Пусть функция y = f(x) определена в точке х и некоторой окрестности этой точки и непрерывна в точке х. Тогда приращению Dх аргумента соответствует приращение Dу = f(x+Dх)- f(x), бесконечно малое при Dх®0. В особый класс дифференцируемых функций выделяются функции, для которых Dу с точностью до бесконечно малой высшего порядка по сравнению с Dх линейна по Dх.
Формула Тейлора позволяет вычислять приближенно значение функции