Физика примеры решения задач Электротехника Задачи и лабораторные работы Математика примеры решения задач Вычислить интеграл Информатика Компьютерные сети Компьютерная математика
Дифференцируемость ФНП Дифференциалы высших порядков Производная сложной ФНП Вычислить интеграл Вычисление площади плоской фигуры Вычисление криволинейных интегралов Длина дуги в декартовых координата

Математика курсовые задачи примеры решений

Абсолютный экстремум ФНП

Допустимая точка  называется точкой абсолютного минимума (или максимума) ФНП ,  в задаче (*), если
выполняется условие:    или  . При этом можно записывать

  или .

Задача абсолютного экстремума для ФНП формулируется аналогично этой задаче для функции одной переменной:

найти  и ,

если  – непрерывна на ,  – связная ограниченная замкнутая область.

Алгоритм решения задачи абсолютного экстремума:

1) найти все внутренние допустимые точки, "подозрительные" на
локальный экстремум;

2) найти допустимые точки, "подозрительные" на экстремум на
границе   множества ;

3) присоединить точки "стыка" границы ;

4) во всех выделенных точках  вычислить значения функции ; выбрать наименьшее число (или  и наибольшее
число (или ).

Сформулированная задача абсолютного экстремума всегда имеет решение. Это следует из теоремы Вейерштрасса:

если функция  – непрерывна на ограниченном замкнутом множестве , то она достигает на множестве   значений
абсолютных минимума и максимума множества .

ПРИМЕР. ,

   (см. рисунок).

Решение. 1) , . Точка  
лежит внутри области .

2) на отрезке  , , имеем ,  при . Точку  фиксируем для дальнейших рассуждений

На отрезке  , , имеем

  или ;  при , поэтому точку  также отбираем.

На отрезке  , , имеем  – не имеет точек экстремума на ;

3) точки "стыка" , ,  границы ;

4) вычисляем значение функции в отобранных точках , , получаем конечное множество чисел

.

Отсюда , .

ЗАДАНИЕ для САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

1. , .

2. ,

.

Ответы. 1. ;

;

.

2. ; .

 Определение дифференцируемости и дифференциала. Пусть функция y = f(x) определена в точке х и некоторой окрестности этой точки и непрерывна в точке х. Тогда приращению Dх аргумента соответствует приращение Dу = f(x+Dх)- f(x), бесконечно малое при Dх®0. В особый класс дифференцируемых функций выделяются функции, для которых Dу с точностью до бесконечно малой высшего порядка по сравнению с Dх линейна по Dх.
Формула Тейлора позволяет вычислять приближенно значение функции