Дифференцирование и интегральное исчисление

Компьютерная математика
Лабораторные по электронике
Работа с файлами и документами
Управление интерфейсом пользователя
Встроенные операторы и функции
Пространство в архитектуре
Компьютерные сети
Вычислительные сети
Основы передачи
дискретных данных
Базовые технологии
Построение локальных сетей
Сетевой уровень
Глобальные сети
Средства анализа
Протокол пересылки
файлов (FTP)
Монтаж локальной сети
Семейство протоколов TCP/IP
Топология ЛВС
Стандартные локальные сети
Сетевой уровень
Информатика
Учебник по программированию
C++
Служба каталогов
Active Directory
Компьютерная безопасность
Брандмауэры
Сетевая архитектура
Клиент и сервер
Турбо Паскаль Практикум
Процедуры и функции Pascal
Примеры программирования
Архитектура ЭВМ
Базы данных и СУБД
Базы данных и файловые системы
Pascal. Курс лекций
Сетевые операционные системы
Язык запросов SQL
Логическое программирование
Программа Проводник
Электронная почта E-Mail
Защита компьютерной
информации
Математика решение задач
Функции и их графики
Дифференцируемость ФНП
Вычислить интеграл
Линейное дифференциальное
уравнение
Пределы
Производные
Векторная алгебра
Корни уравнения
Кривые и поверхности
Комплексные числа
Математическая логика
Дифференцирование и
интегральное исчисление
Дифференциальные уравнения
Интегралы
Курсовые задания
Применение интегралов
Теория функций
комплексного переменного
Двойные интегралы
Дифуры
Элементарная математика
Интегральное исчисление
Математический анализ
Степенные ряды
Вычисление пределов
Типовой расчет
Подготовка к экзамену
Примеры решения задач
Лекции матан
Правило Лопиталя
Элементы теории кривых
Производные и дифференциалы
высших порядков
Непрерывные функции
Предел функции
Последовательности
Формула Тейлора
Определенные интегралы
Кратные интегралы
Тензоры
Интегралы, зависящие
от параметра
Элементы теории поля
Криволинейные интегралы
Тройные интегралы
Задачи по Кузнецову
Вычислить предел
Построить график
Комбинаторика
Исследовать систему уравнений и решить ее, если она совместна
Метод Гаусса
Математическая модель
Системы линейных уравнений
Векторная алгебра
Аналитическая геометрия
Введение в математический анализ
Производная и дифференциал
Исследование функций
Интегральное исчисление функции одной переменной
Обыкновенные дифференциальные уравнения
числовые ряды
Теория вероятностей
Дифференцируемость ФНП
Дифференцирование сложной ФНП
Абсолютный экстремум ФНП
Интегрирование функций нескольких переменных
Некоторые свойства интеграла ФНП
Геометрические свойства интеграла ФНП
Типовые задачи
Вычисление площади криволинейной поверхности
Длина дуги в декартовых координатах
Линейные дифференциальные уравнения

Метод интегрируемых комбинаций

 

 

Дифференциальное исчисление функции одной переменной

Производная функции, ее геометрический и физический смысл Определение. Производной функции f(x) в точке х = х0 называется предел отношения приращения функции в этой точке к приращению аргумента, если он существует.

Логарифмическое дифференцирование  Способ логарифмического дифференцирования состоит в том, что сначала находят логарифмическую производную функции, а затем производную самой функции по формуле

Производная обратных функций Производная функции в точке Примеры решения и оформления задач контрольной работы

Дифференциал функции Определение. Дифференциалом функции f(x) в точке х называется главная линейная часть приращения функции.

Пример: Применить полученную формулу для нахождения синуса любого угла с любой степенью точности.
Пример: Вычислить sin28013¢15¢¢.
Теоремы о среднем
Раскрытие неопределенностей
Пример: Найти предел .

Исследование функций с помощью производной Возрастание и убывание функций

 Теорема. 1) Если функция f(x) имеет производную на отрезке [a, b] и возрастает на этом отрезке, то ее производная на этом отрезке неотрицательна, т.е. f¢(x) ³ 0.

  2) Если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на промежутке (а, b), причем f¢(x) > 0 для a < x < b, то эта функция возрастает на отрезке [a, b].

Асимптоты Прямая называется асимптотой кривой, если расстояние от переменной точки кривой до этой прямой при удалении точки в бесконечность стремится к нулю.

Векторная функция скалярного аргумента

Свойства производной векторной функции скалярного аргумента

Параметрическое задание функции

Уравнения некоторых типов кривых в параметрической форме

Производная функции, заданной параметрически

Кривизна плоской кривой

Свойства эволюты

Кривизна пространственной кривой

О формулах Френе

  • Пример: Методами дифференциального исчисления исследовать функцию  и построить ее
  • Пример: Исследовать функцию  и построить ее график.график.
  • Пример: Исследовать функцию  и построить ее график.

 

Функция F(x) называется первообразной функцией  функции f(x) на отрезке [a, b], если в любой точке этого отрезка верно равенство:
F¢(x) = f(x).
Методы интегрирования Рассмотрим три основных метода интегрирования.
  Пример.   
Интегрирование некоторых тригонометрических функций

Интегралов от тригонометрических функций может быть бесконечно много. Большинство из этих интегралов вообще нельзя вычислить аналитически, поэтому рассмотрим некоторые главнейшие типы функций, которые могут быть проинтегрированы всегда. Интеграл вида  Здесь R – обозначение некоторой рациональной функции от переменных sinx и cosx..

Биноминальным дифференциалом называется выражение xm(a + bxn)pdx где m, n, и p – рациональные числа.
Вычисление определенного интеграла

Что касается приемов вычисления определенных интегралов, то они практически ничем не отличаются от всех тех приемов и методов, которые были рассмотрены выше при нахождении неопределенных интегралов.

  Точно так же применяются методы подстановки (замены переменной), метод интегрирования по частям, те же приемы нахождения первообразных для тригонометрических, иррациональных и трансцендентных функций. Особенностью является только то, что при применении этих приемов надо распространять преобразование не только на подинтегральную функцию, но и на пределы интегрирования. Заменяя переменную интегрирования, не забыть изменить соответственно пределы интегрирования.

  Пример. Найти полный дифференциал функции .
  Пример. Вычислить производную функции z = x2 + y2x в точке А(1, 2) по направлению вектора . В (3, 0).
Кратные интегралы  Как известно, интегрирование является процессом суммирования. Однако суммирование может производится неоднократно, что приводит нас к понятию кратных интегралов. Рассмотрение этого вопроса начнем с рассмотрения двойных интегралов.
  Пример. Вычислить интеграл , если область интегрирования D ограничена линиями х = 0, х = у2, у = 2.

Тройной интеграл

 При рассмотрении тройного инеграла не будем подробно останавливаться на всех тех теоретических выкладках, которые были детально разобраны применительно к двойному интегралу, т.к. существенных различий между ними нет.

  Единственное отличие заключается в том, что при нахождении тройного интеграла интегрирование ведется не по двум, а по трем переменным, а областью интегрирования является не часть плоскости, а некоторая область в техмерном пространстве.

 

[an error occurred while processing this directive]