Кривые и поверхности Линейные пространства уравнения

Компьютерная математика
Лабораторные по электронике
Работа с файлами и документами
Управление интерфейсом пользователя
Встроенные операторы и функции
Пространство в архитектуре
Компьютерные сети
Вычислительные сети
Основы передачи
дискретных данных
Базовые технологии
Построение локальных сетей
Сетевой уровень
Глобальные сети
Средства анализа
Протокол пересылки
файлов (FTP)
Монтаж локальной сети
Семейство протоколов TCP/IP
Топология ЛВС
Стандартные локальные сети
Сетевой уровень
Информатика
Учебник по программированию
C++
Служба каталогов
Active Directory
Компьютерная безопасность
Брандмауэры
Сетевая архитектура
Клиент и сервер
Турбо Паскаль Практикум
Процедуры и функции Pascal
Примеры программирования
Архитектура ЭВМ
Базы данных и СУБД
Базы данных и файловые системы
Pascal. Курс лекций
Сетевые операционные системы
Язык запросов SQL
Логическое программирование
Программа Проводник
Электронная почта E-Mail
Защита компьютерной
информации
Математика решение задач
Функции и их графики
Дифференцируемость ФНП
Вычислить интеграл
Линейное дифференциальное
уравнение
Пределы
Производные
Векторная алгебра
Корни уравнения
Кривые и поверхности
Комплексные числа
Математическая логика
Дифференцирование и
интегральное исчисление
Дифференциальные уравнения
Интегралы
Курсовые задания
Применение интегралов
Теория функций
комплексного переменного
Двойные интегралы
Дифуры
Элементарная математика
Интегральное исчисление
Математический анализ
Степенные ряды
Вычисление пределов
Типовой расчет
Подготовка к экзамену
Примеры решения задач
Лекции матан
Правило Лопиталя
Элементы теории кривых
Производные и дифференциалы
высших порядков
Непрерывные функции
Предел функции
Последовательности
Формула Тейлора
Определенные интегралы
Кратные интегралы
Тензоры
Интегралы, зависящие
от параметра
Элементы теории поля
Криволинейные интегралы
Тройные интегралы
Задачи по Кузнецову
Вычислить предел
Построить график
Комбинаторика
Исследовать систему уравнений и решить ее, если она совместна
Метод Гаусса
Математическая модель
Системы линейных уравнений
Векторная алгебра
Аналитическая геометрия
Введение в математический анализ
Производная и дифференциал
Исследование функций
Интегральное исчисление функции одной переменной
Обыкновенные дифференциальные уравнения
числовые ряды
Теория вероятностей
Дифференцируемость ФНП
Дифференцирование сложной ФНП
Абсолютный экстремум ФНП
Интегрирование функций нескольких переменных
Некоторые свойства интеграла ФНП
Геометрические свойства интеграла ФНП
Типовые задачи
Вычисление площади криволинейной поверхности
Длина дуги в декартовых координатах
Линейные дифференциальные уравнения

Метод интегрируемых комбинаций

 

 

Кривые второго порядка

Определение  Кривой второго порядка называется множество точек, координаты которых удовлетворяют уравнению второго порядка $\displaystyle ax^2+bxy+cy^2+dx+fy+g=0,$

Окружность

Эллипс

Определение 12.3   Эллипсом называется геометрическое место точек плоскости, для каждой из которых сумма расстояний до двух данных точек той же плоскости, назывемых фокусами эллипса, есть величина постоянная.       

Предложение Эллипс обладает двумя взаимно перпендикулярными осями симметрии, на одной из которых находятся его фокусы, и центром симметрии. Если эллипс задан каноническим уравнением (12.4), то его осями симметрии служат оси $ Ox$ и $ Oy$ , начало координат -- центр симметрии.

Гипербола

Парабола

Пример   Постройте параболу $ y^2=3x$ . Найдите ее фокус и директрису.

Параллельный перенос системы координат

Пусть на плоскости заданы две декартовы прямоугольные системы координат: $ xOy$ ("старая") и $ \tilde xO_1\tilde y$ ("новая"), причем как оси абсцисс, так и оси ординат обеих систем параллельны и одинаково направлены

В этом случае говорят, что одна система координат получается из другой "параллельным переносом".

 Пример   Нарисуйте кривую $ {x^2+9y^2-4x+18y+4=0}$ и найдите ее фокусы.

Пример   Постройте кривую $\displaystyle x+1+\sqrt{2-2y^2+4y}=0.$

Поверхности второго порядка

Определение Поверхностью второго порядка называется поверхность, определяемая уравнением $\displaystyle ax^2+by^2+cz^2+dxy+fxz+gyz+hx+ky+lz+m=0,$

Линейные пространства уравнения

Системы линейных уравнений

     Определение 15.1   Системой $ m$ линейных уравнений с $ n$ неизвестными называется система уравнений вида $\displaystyle \left\{\begin{array}{l}a_{11}x_1+a_{12}x_2+\ldots+a_{1n}x_n=b_1,\...
...ots\ldots\ldots\\ 
 a_{m1}x_1+a_{m2}x_2+\ldots+a_{mn}x_n=b_m.\end{array}\right.$

Алгебраические структуры

Многомерные пространства

Линейные преобразования

Математика Интегральное исчисление Основы оптики Практические занятия правила работы с матрицами и примеры матричных расчетов