Производные Свойства дифференцируемых функций

 


Мгновенная скорость при прямолинейном движении

Касательная к кривой на плоскости

Определение

Производная

Итак, согласно предыдущим двум определениям, производная $ f'(x_0)$ функции $ f(x)$ в точке $ x_0$, правая производная $ f'_+(x_0)$ и левая производная $ f'_-(x_0)$ задаются, соответственно, формулами \begin{subequations}\begin{gather}
 f'(x_0)=\lim_{h\to0}\dfrac{f(x_0+h)-f(x_0)}{...
..._-(x_0)=\lim_{h\to0-}\dfrac{f(x_0+h)-f(x_0)}{h},
 \end{gather}\end{subequations}

    • Замечание
    • Закон Фарадея Электродвижущая сила наведенная в замкнутом контуре C, равна скорости изменения магнитного потока, проходящего через данный контур Решение задач на вычисление интеграла Математика лекции, задачи. Примеры выполнения курсового и типового задания
    • Теорема

Свойства производных

Замечания

Производные некоторых элементарных функций

Найдём производную функции $ f(x)=\sqrt{x}$ в точке $ x>0$.

Рассмотрим функцию $ f(x)=\mathop{\rm tg}\nolimits x$ как отношение $ \dfrac{\sin x}{\cos x}$

Примеры

Дифференциал

Теорема   Функция $ f(x)$ имеет дифференциал $ df(x_0;{\Delta}x)$ в точке $ x_0$ тогда и только тогда, когда она имеет производную $ f'(x_0)$ в этой точке; при этом
$\displaystyle df(x_0;{\Delta}x)=f'(x_0){\Delta}x.$

Производная композиции

Примеры

Примеры

Инвариантность дифференциала

Производная обратной функции

Производные некоторых элементарных функций (продолжение)

Пример

Сводка основных результатов о производных

Производные высших порядков

Пример

Дифференциалы высших порядков и их неинвариантность

Производные функции, заданной параметрически

Пусть задана зависимость двух переменных $ x$ и $ y$ от параметра $ t$, изменяющегося в пределах от $ {\alpha}$ до $ {\beta}$:

$\displaystyle x={\varphi}(t); y=\psi(t); t\in({\alpha};{\beta}).$

Пусть функция $ x={\varphi}(t)$ имеет обратную: $ t={\varphi}^{-1}(x)=\Phi(x)$. Тогда мы можем, взяв композицию функций $ y=\psi(t)$ и $ t=\Phi(x)$, получить зависимость $ y$ от $ x$: $ y=\psi(\Phi(x))$. Зависимость величины $ y$ от величины $ x$, заданная через зависимость каждой из них от параметра $ t$ в виде $ x={\varphi}(t), y=\psi(t)$, называется функцией $ y=y(x)$, заданной параметрически.

 

Производная функции, заданной неявно

 

Приближённое вычисление производных

Примеры и упражнения

Примеры и упражнения 2

Свойства дифференцируемых функций

Четыре теоремы о дифференцируемых функциях

В этом разделе мы рассмотрим некоторые утверждения, касающиеся функций, которые во всех точках данного множества имеют производную. Такие функции называются дифференцируемыми на данном множестве.

Правило Лопиталя

На основе теоремы Коши мы выведем правило, которое даст нам мощный способ вычисления пределов отношений двух бесконечно малых или двух бесконечно больших величин. Сформулируем его сначала для отношения бесконечно малых.

Теорема 5.5(Правило Лопиталя)   Пусть функции $ f(x)$ и $ g(x)$ непрерывны в некоторой окрестности $ E$ точки $ x_0$ и $ f(x_0)=g(x_0)=0$, то есть $ f(x)\to0$ и $ g(x)\to0$ при $ x\to x_0$. Предположим, что при $ x\in E,\;x\ne x_0$ функции $ f(x)$ и $ g(x)$ имеют производные $ f'(x)$ и $ g'(x)$, причём существует предел отношения этих производных: $\displaystyle \lim_{x\to x_0}\dfrac{f'(x)}{g'(x)}=L.$

Замечания

Правило Лопиталя для отношения бесконечно больших

 

Сравнение бесконечно больших величин

Пусть $ \mathcal{B}$ -- некоторая база, и $ f(x)$ и $ g(x)$ -- функции, заданные на некотором окончании этой базы. В главе 2 мы изучали сравнение функций $ f(x)$ и $ g(x)$ при базе $ \mathcal{B}$ в случае, когда они является бесконечно малыми. Здесь же мы изучим сравнение бесконечно больших $ f(x)$ и $ g(x)$.

Примеры

Примеры

Математика Интегральное исчисление Основы оптики Практические занятия правила работы с матрицами и примеры матричных расчетов