Женские платья купить недорого в интернет магазине источник.
Физика примеры решения задач Электротехника Задачи и лабораторные работы Математика примеры решения задач Вычислить интеграл Информатика Компьютерные сети Компьютерная математика
Дифференцируемость ФНП Дифференциалы высших порядков Производная сложной ФНП Вычислить интеграл Вычисление площади плоской фигуры Вычисление криволинейных интегралов Длина дуги в декартовых координата

Математика примеры решения задач курсового, типового расчета, контрольной работы

Вычисление интеграла ФНП.

Типовые задачи

Вычисление площади плоской фигуры

б) Площадь плоской фигуры в полярных координатах

На плоскости можно рассмотреть полярную систему координат . Тогда точке  соответствуют координаты  и , предполагаем полуоси  и  () совпадающими; причем  положительное
направление угла   – против вращения часовой стрелки.

Физические приложения определённого интеграла

Фигура на плоскости, ограниченная лучами ,  () и кривой , , называется криволинейным сектором. Очевидно, при   имеет круговой сектор и его площадь . Поэтому если провести процедуру построения интегральной суммы  для разбиения , ,  и системы точек , то при , где , , придем к интегралу , который можно
интерпретировать как площадь криволинейного сектора.

Итак, если предел интегральной суммы, построенной по указанной процедуре, существует, то площадь криволинейного сектора можно вычислить по формуле

.

ПРИМЕР 7. Найти площадь фигуры, ограниченной лемнискатой
Бернулли  и окружностью  (внутри
окружности).

Решение. Лемниската существует при , т.е. для  или для ; периодически повторяется для . Симметрия кривой следует из четности функции . При , изменяющемся от  до , значение  убывает от  до , т.е. значение  убывает от  до  () (см. рисунок). Пересечение лемнискаты и окружности 

  имеем при  и по
симметрии при .

Для вычисления площади используем симметрию фигуры ;  – площадь фигуры в I квадранте. Фигура  – объединение двух криволинейных секторов и поэтому

.

Окончательно имеем .

Задача 13. Доказать неравенства.

а) .

Доказательство. Обозначим . Особая точка . Так как

, то интеграл  абсолютно сходится.

Пусть

. (40)

 Рассмотрим интеграл . Обозначим . Имеем

.  (41)

Докажем, что

.  (42)

Действительно, . Следовательно,  убывает на промежутке . А так как , то отсюда следует (42). (41) и (42) дают нам, что . Следовательно,

. (43)

Используя вторую из формул (43), получим . Итак,

.  (44)

Оценим интеграл . Имеем

,  (45)

Так как  (см. (40), то из неравенств (44) и (45) получаем

.  (46)

(Доказать, что неравенства (44) и (45) строгие).

Пусть теперь

.  (47)

Используя первую из формул (43), получим

.  (48)

Докажем, что

.  (49)

Интегрируя по частям, имеем

.  (50)

Далее

. (51)

Из (50) и (51) получим .

Неравенство (49) доказано. Из (47) - (49) следует

. (52)

Неравенства (46) и (52) дают

.

Замечание. Интегрируя по частям интеграл , можно получить более точную оценку интеграла .

б) .

Доказательство. Обозначим . Интеграл  является сходящимся несобственным интегралом (доказать). Имеем

. (53)

Очевидно, что . Отсюда

.  (54)

Далее . Тогда

.  (55)

Объединяя (53) - (55), получим

.  (56)

Замечание. Оценка (56) может быть улучшена.


Формула Тейлора позволяет вычислять приближенно значение функции