Физика примеры решения задач Электротехника Задачи и лабораторные работы Математика примеры решения задач Вычислить интеграл Информатика Компьютерные сети Компьютерная математика
Дифференцируемость ФНП Дифференциалы высших порядков Производная сложной ФНП Вычислить интеграл Вычисление площади плоской фигуры Вычисление криволинейных интегралов Длина дуги в декартовых координата

Математика примеры решения задач курсового, типового расчета, контрольной работы

Дифференцирование сложной ФНП

Сложная ФНП, как и сложная функция одного переменного, есть суперпозиция двух или нескольких функций. Например, сложная функция , определенная на множестве , понимается как суперпозиция "внешней" функции  и "внутренних" функций , , определенных на множестве . При этом множество значений

совпадает с областью определения функции . Переменные ,  называем независимыми; ,  – промежуточными.

Число независимых и промежуточных переменных может быть различным.

Рассмотрим теорему о дифференцируемости сложной функции , . Ее доказательство и формула производной сложной функции может быть распространена на другие
виды сложной ФНП.

ТЕОРЕМА. Если

функция ,   – дифференцируемая в точке , , т.е. , причем ;

функция ,  – дифференцируемая в точке , , т.е. , причем ;

функция , , где

  – дифференцируемая в точке , где , ,
т.е. , где , причем ,

то сложная функция  дифференцируема
в точке .

Доказательство. Пусть , . Тогда
последовательно имеем

, где , , т.е. ;

аналогично .

Используя условие теоремы, можно записать

, поскольку

.

Здесь  в силу дифференцируемости функций ,  и  по условиям теоремы.

Заметим, что число

  –

производная рассматриваемой сложной функции  в точке .

Для вычисления производных сложной функции в общем случае нужно: 1) сложную функцию дифференцировать по независимым
переменным; 2) установить число независимых переменных (что
соответствует количеству возможных частных производных первого порядка сложной функции); 3) определить число промежуточных переменных (т.е. количество слагаемых в формуле для значения
каждой частной производной сложной функции).

Задачи 4 - 6. Исследовать сходимость интеграла.

а) .

Решение. Интеграл  - несобственный интеграл 1-го рода, подынтегральная функция положительна при любом . Кроме того,  при .

Используя следствие из теоремы 1 (теорема сравнения) и результат примера 1 , отсюда получим

Ответ: интеграл  сходится.

б) .

Решение. Как и в предыдущем случае, интеграл  - несобственный интеграл 1-го рода с неотрицательной подынтегральной функцией. Здесь невозможно непосредственно использовать теорему сравнения или ее следствие. Исследуем сходимость этого интеграла двумя способами.

1-й способ. Используя следствие из критерия Коши, докажем, что интеграл   расходится. Этот означает, что существует  такое, что для любого  существуют  такие, что

.  (7)

Пусть . Тогда

.

Таким образом, для любого  существуют  такие, что выполняется неравенство (7) при . Значит, интеграл  расходится.


Формула Тейлора позволяет вычислять приближенно значение функции