Математика примеры решения задач курсового, типового расчета

Компьютерная математика
Лабораторные по электронике
Работа с файлами и документами
Управление интерфейсом пользователя
Встроенные операторы и функции
Пространство в архитектуре
Компьютерные сети
Вычислительные сети
Основы передачи
дискретных данных
Базовые технологии
Построение локальных сетей
Сетевой уровень
Глобальные сети
Средства анализа
Протокол пересылки
файлов (FTP)
Монтаж локальной сети
Семейство протоколов TCP/IP
Топология ЛВС
Стандартные локальные сети
Сетевой уровень
Информатика
Учебник по программированию
C++
Служба каталогов
Active Directory
Компьютерная безопасность
Брандмауэры
Сетевая архитектура
Клиент и сервер
Турбо Паскаль Практикум
Процедуры и функции Pascal
Примеры программирования
Архитектура ЭВМ
Базы данных и СУБД
Базы данных и файловые системы
Pascal. Курс лекций
Сетевые операционные системы
Язык запросов SQL
Логическое программирование
Программа Проводник
Электронная почта E-Mail
Защита компьютерной
информации
Математика решение задач
Функции и их графики
Дифференцируемость ФНП
Вычислить интеграл
Линейное дифференциальное
уравнение
Пределы
Производные
Векторная алгебра
Корни уравнения
Кривые и поверхности
Комплексные числа
Математическая логика
Дифференцирование и
интегральное исчисление
Дифференциальные уравнения
Интегралы
Курсовые задания
Применение интегралов
Теория функций
комплексного переменного
Двойные интегралы
Дифуры
Элементарная математика
Интегральное исчисление
Математический анализ
Степенные ряды
Вычисление пределов
Типовой расчет
Подготовка к экзамену
Примеры решения задач
Лекции матан
Правило Лопиталя
Элементы теории кривых
Производные и дифференциалы
высших порядков
Непрерывные функции
Предел функции
Последовательности
Формула Тейлора
Определенные интегралы
Кратные интегралы
Тензоры
Интегралы, зависящие
от параметра
Элементы теории поля
Криволинейные интегралы
Тройные интегралы
Задачи по Кузнецову
Вычислить предел
Построить график
Комбинаторика
Исследовать систему уравнений и решить ее, если она совместна
Метод Гаусса
Математическая модель
Системы линейных уравнений
Векторная алгебра
Аналитическая геометрия
Введение в математический анализ
Производная и дифференциал
Исследование функций
Интегральное исчисление функции одной переменной
Обыкновенные дифференциальные уравнения
числовые ряды
Теория вероятностей
Дифференцируемость ФНП
Дифференцирование сложной ФНП
Абсолютный экстремум ФНП
Интегрирование функций нескольких переменных
Некоторые свойства интеграла ФНП
Геометрические свойства интеграла ФНП
Типовые задачи
Вычисление площади криволинейной поверхности
Длина дуги в декартовых координатах
Линейные дифференциальные уравнения

Метод интегрируемых комбинаций

 

Дифференцируемость ФНП

Теорема о существовании всех частных производных ФНП

Для функции  вычислить  и  и сравнить эти значения, если ; ; .

Теорема о достаточных условиях дифференцируемости ФНП в точке

Вычисление двойного интеграла Типовые расчеты (курсовые задания) по математике

Дифференциалы высших порядков ФНП Пусть в области , , задана произвольная ФНП , , имеющая непрерывные частные производные первого порядка.

Для  вычислить  и , где  и , ,  – произвольные постоянные числа.

Формула Тейлора для ФНП записывается в дифференциальной форме по аналогии с формулой Тейлора для функции одной переменной

Формула Тейлора позволяет вычислять приближенно значение функции с любой наперед заданной точностью. Погрешность может быть установлена с помощью оценки остаточного члена.

Дифференцирование сложной ФНП Сложная ФНП, как и сложная функция одного переменного, есть суперпозиция двух или нескольких функций. Например, сложная функция , определенная на множестве , понимается как суперпозиция "внешней" функции   и "внутренних" функций , , определенных на множестве . При этом множество значений Интегрирование функций нескольких переменных. Двойной интеграл и его свойства.

Производная сложной ФНП по независимому переменному равна сумме произведений производной внешней функции по каждому из промежуточных переменных, умноженной на производную этого промежуточного переменного по соответствующему независимому аргументу.

Диффенцирование неявно заданной функции

Найти частные производные функции , заданной неявно уравнением  в окрестности точки .

Различают несколько постановок задачи на нахождение экстремума ФНП

Исследовать на локальный экстремум .

Абсолютный экстремум ФНП Допустимая точка  называется точкой абсолютного минимума (или максимума) ФНП ,  в задаче (*), если
выполняется условие:   или  .

Интегрирование функций нескольких переменных ФНП   рассматривается на некотором множестве , , . Пусть  – ограниченное, связное и замкнутое множество точек из ; впредь для краткости такое множество   будем называть фигурой . Интеграл ФНП по фигуре   строится в зависимости от количества независимых переменных ФНП и структуры (вида) фигуры

Понятие интеграла ФНП Для построения интеграла ФНП  по фигуре , , используется следующая процедура построения интегральной суммы и переход к пределу.

В зависимости от числа независимых переменных функции, размерности и меры фигуры интеграл  имеет различное представление, интерпретацию и способ счета.

Теорема необходимое условие существования определенного интеграла

Пусть , ,  – множество точек из , т.е. .

Построить схематично график функции   на множестве :

Для функции  представить на плоскости  множество точек  ее существования; указать свойства этого множества.

Понятие предела функции многих переменных (сокр. ФНП) вводится в предельной точке области определения функции.

Иногда удобно использовать переход от переменных  и  к полярным координатам. В частности, условие  (одновременно и независимо друг от друга) преобразуется в условие  при всяком  (независимо от ; сразу для всех ).

Многие теоремы о пределах, рассмотренные подробно для функции одной переменной (сокр. ФОП), могут быть перефразированы и доказаны для ФНП. Это прежде всего теорема об единственности предела (конечного), теорема о локальной ограниченности функции, имеющей конечный предел при , теорема "об арифметике" функций, имеющих конечные пределы при  и т.д. Приемы вычисления предела ФОП также могут быть использованы для ФНП.

Показать, что функция   непрерывна в точке  по каждой координате  и , но не является непрерывной в точке  по совокупности переменных.

Пусть , , . Частные производные первого порядка функции  вводятся соответственно соотношениям

Записать уравнение касательной плоскости к поверхности   в точке .

Некоторые свойства интеграла ФНП

Геометрические свойства интеграла ФНП Возможное геометрическое представление интегральной суммы  функции  на , а затем и интеграла  определяют геометрические свойства интеграла и перечень некоторых возможных задач, решаемых с помощью интеграла.

Площадь части криволинейной поверхности  считается с помощью поверхностного интеграла

Некоторые механические приложения интеграла ФНП Масса фигуры (отрезка, дуги, плоской фигуры, части криволинейной поверхности, тела)

Вычисление интеграла  рассмотрим подробно в зависимости от  и .

Для подынтегральной функции  определенный интеграл с переменным верхним пределом определяет
первообразную на .

Электротехника курсовые, лабораторные, практика Математика, физика